美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区

產品分類

當前位置: 首頁 > 工業控制產品 > 自動化控制 > 激光器

類型分類:
科普知識
數據分類:
激光器

突破鴻溝,科學家發明室溫下的太赫茲激光器

發布日期:2022-10-09 點擊率:76

科學家發明室溫下的太赫茲激光器


據報道,這種世界上第一款室溫太赫激光器利用相當于光學外差法的技術來彌合太赫鴻溝。目前,太赫鴻溝存在于大多數半導體激光無法工作的地方,在微波波長(厘米波)和光波長(微米波)之間,其間是毫米波——太赫。


目前,在太赫茲頻率工作的唯一激光器是超冷卻量子級聯激光器(QCL)。最近,QCL的共同發明人(1944年在貝爾實驗室)、哈佛大學教授Federico Capasso已經證明,把在想要的太赫頻率上的、空間分隔的、兩個易于產生的光學頻率,在非線性材料中利用外差法注入進行混合,就可以得到室溫下的太赫激光器。


“這種非線性光學材料的有趣特征在于,當由兩個頻率激發時,它們的要素分子會連貫地振動,不僅僅在稱為‘泵頻’的驅動頻率上,而且在它們的差頻上,”哈佛大學教授Federico Capasso說道,“因此,在材料的輸出上,你不僅僅可以觀察到泵頻的光線,而且能夠觀察到差頻的光線,這個過程類似于在無線電中廣為采用的超外插原理。”


通過選擇易于在室溫產生的光學波長,但是,其頻差嚴格等于想要的太赫頻率,Capasso和哈佛研究協會的Mikhail Belkin回避了太赫鴻溝所存在的問題,獲得了工作在室溫的太赫激光器。Capasso的研究小組所采用的兩個光學激光器在室溫下被證明頻率分別為33.7-THz (8.9-微米波)和28.5-THz (10.5微米波),它們產生的差頻為5.2 THz。


“基本上,電子在這個頻率被驅動至完全同相振蕩,因此,產生相干太赫發射,”Capasso表示,“該器件的結構是紅外線雙中頻QCL以及非線性材料這兩者相結合,從而差生頻率差。因為兩個紅外線中頻是在室溫下產生的,它們的頻差顯然也是在室溫下產生的。以這種方式,我們成功地突破了THz QCL的極限,以前的器件迄今為止僅僅工作在低溫條件下。”


太赫掃描儀就像X射線一樣工作,但是,它的功率水平對于使用它的周圍的人來說是完全安全的。利用太赫掃描儀,機場可以檢測出隱藏在衣服中的武器,以及在行李中的有害和有毒物質。太赫激光器也可以被用于遠程監測在空氣中漂浮的有害氣體,從而為在一定距離上辨別臨時放置好的爆炸設備提供一種潛在的解決方案。


量子阱階梯


傳統的激光器給電子注入能量,然后,從半導體的導帶激發出一個中子,使之跳躍至價帶。相比之下,量子級聯激光器安排一個量子阱階梯,每一個處于漸變的較低能級,從而允許電子沿著能量階梯級聯下來,在每一個階梯上發射一顆中子。目前,量子級聯激光器如果不做過冷處理就無法在太赫頻段工作。然而,通過采用超外差架構,哈佛的研究人員證明,兩個量子級聯激光器的混合輸出可以覆蓋太赫茲頻段。


在非線性光學領域,超外差原理就是著名的差頻產生(DFG)技術。當光線撞擊非線性材料時,它們的行為就像線性諧振子一樣,只有當頻率匹配它們的自己的內部自然諧振頻率時才會振蕩。另一方面,像真空管和晶體管這樣的非線性器件可以被制成在兩個輸入的合頻以及差頻上諧振,從而允許無線電在各個頻帶之間搬移信號,或者,對信號進行編解碼。


其它研究人員已經證明了利用DFG實現太赫激光的可行性,但是,要采用碩大的外部“泵”激光來證明其原理。哈佛大學的研究小組利用半導體材料完成了這個任務,如果一切進展順利,最終將以廉價實現室溫下器件的大規模生產。


“我們的器件在一個微型半導體晶體上完成了一切,不需要利用碩大的外部激光做泵源,因此,優點在于緊湊、便攜、低功耗,”Capasso表示,“實際上,器件的材料被設計和生長為當偏置電流作用在它上面時,激光器不僅僅發射出所產生的兩個不同的紅外線中頻,而且以相應的差頻產生相干輻射,在我們的情形下,就是在5太赫茲。”


這種非線性器件像混頻(產生合頻與差頻)那樣工作的機制取決于所采用的材料。量子級聯激光器在制造過程中采用了分子束外延,從鎵和鋁構成的輪換層上一次制成原子層。每一層原子層均比它前面的一層稍薄。


下一步,哈佛的研究人員計劃最優化它們的設計,以努力把輸出功率從目前的納瓦級提高至幾個毫瓦。其中,一種解決方案就是把熱電冷卻裝置加入到激光器的襯底上,因為激光工作溫度越低,輸出功率越大。其次,該小組計劃把半導體材料的邊緣發射轉換為表面發射。


“我們的方法將極大地增加用于發射的表面積,”Capasso說道,“通過制成一種合適的光柵,由它垂直地把器件有源區產生的太赫茲輻射分散,就可以實現表面輻射。”


Belkin和Capasso的研究工作得到了Texas A&M大學的研究人員Feng Xie和Alexey Belyanin、以及瑞士蘇黎世的ETH大學的研究人員Milan Fischer、Andreas Wittmann和Jrme Faist等人的協作。研究資金由美國Air Force Office of Scientific Research、國家科學基金以及兩個基于哈佛的研究中心、美國納米級科學和工程中心以及美國國家納米科技基礎設施網絡下屬的納米級系統中心等單位提供。


翻頁查看英文原文:




Room-temperature terahertz laser invented


What's claimed to be the world's first room-temperature terahertz laser harnesses the optical equivalent of heterodyning to bridge the terahertz gap. Today, a terahertz-gap exists where most semiconductor lasers fail to operate--between microwave wavelengths (centimeters) and optical wavelengths (microns). In between are the millimeter wavelengths--terahertz frequencies (1-10 THz).


The only semiconductor lasers that run at terahertz frequencies today are supercooled quantum cascade lasers (QCL). Now, the co-inventor of the QCL (while at Bell Labs in 1994), professor Federico Capasso at Harvard University, has demonstrated a heterodyning method cast in nonlinear materials that mixes two easy-to-generate optical frequencies spaced apart at the desired terahertz frequency, resulting in a room-temperature terahertz laser.


"This class of nonlinear optical materials has the interesting property that, when illuminated by two frequencies, their constituent molecules vibrate coherently, not only at the driving frequencies, known as 'pump' frequencies, but also at their difference frequency," said Harvard professor, Federico Capasso. "As a result, at the output of the material one not only observes light at the pump frequencies, but also at the difference frequency--a process similar to the heterodyne principle widely used in radio."


By choosing optical wavelengths that are easy to generate at room temperature--but whose difference is exactly the desired terahertz frequency--Capasso and Harvard research associate Mikhail Belkin sidestepped the terahertz-gap problem, resulting in a terahertz laser that operates at room temperature. The two optical lasers used by Capasso's group in its room-temperature demonstration were at 33.7-THz (8.9-micron wavelength) and 28.5-THz (10.5-micron wavelength), which produced a difference frequency of 5.2 THz.


"Basically, electrons are driven to oscillate all in phase at this frequency, thus producing coherent terahertz emission," said Capasso. "The device structure is both a two frequency mid-infrared QCL and a nonlinear material, which generates the frequency difference. Since the two mid-infrared frequencies are generated at room temperature, their difference obviously is, as well. In this way we have circumvented the limitation of THz QCLs, which operate so far only at cryogenic temperatures."


Terahertz scanners act like x-rays, but at power levels that are completely safe to use around people. Using a terahertz scanner, airports could detect hidden weapons under clothing, as well as hazardous and toxic materials inside luggage. Terahertz lasers could also remotely detect hazardous gases floating in the air, offering a potential solution to identifying improvised explosive devices from a distance.


A stair-step of quantum wells


Conventional lasers energize electrons, which then emit a single photon by jumping from the semiconductor's conduction band to its valence band. Quantum cascade lasers, on the other hand, arrange a stair-step of quantum wells--each at a progressively lower energy level--that allow electrons to cascade down an energy staircase, emitting a photon at each step. Today, quantum cascade lasers lose their ability to work in the terahertz gap without supercooling. But by using a heterodyning architecture, the Harvard researchers demonstrated twin quantum cascade lasers, whose mixed output is in the terahertz gap.


The heterodyning principle is well known in nonlinear optics as difference frequency generation (DFG). Most materials act like linear harmonic oscillators when light impinges on them, oscillating only when the frequency matches their own internal natural resonant frequency. Nonlinear materials like vacuum tubes and transistors, on the other hand, can be made to resonate at the sum and difference frequencies of two inputs, enabling radios to move signals between bands, or to encode and decode them.


Others have demonstrated the feasibility of terahertz lasers using DFG, but bulky external "pump" lasers were used just to prove the principle. The Harvard group accomplished the task with semiconductor materials that, if all goes well, eventually could be mass produced for inexpensive room-temperature devices.


"Our device does everything in one small semiconductor crystal with no need for bulky external lasers for pumping; hence, the advantages of compactness, portability and low power consumption," said Capasso. "In essence, the material of the device is designed and grown so that when a bias current is applied to it, not only are laser beams emitting at two different mid-infrared frequencies generated, but also coherent radiation at the difference frequency corresponding, in our case, to 5 Terahertz".


The mechanism by which nonlinear devices perform operations like mixing--generating sum and difference frequencies--depends on the materials used. The quantum cascade laser is fabricated using molecular-beam epitaxy, a layer of atoms at a time, from alternating layers of gallium and aluminum. Each layer is slightly thinner than the one before it.


Next, the Harvard researchers plan to optimize their design in an attempt to increase the output power to milliwatts, from its nanowatt levels today. One way is to add low-cost thermoelectric coolers to the laser's substrate--since the cooler the laser runs, the higher its output power. Secondly, the group plans to switch from edge emission to surface emission for their semiconductor material.


"Our approach will be to greatly increase the surface area used for emission," said Capasso. "Surface emission will be achieved by fabricating a suitable grating to scatter vertically the terahertz radiation generated in the device's active region."


Belkin and Capasso performed the work in cooperation with researchers Feng Xie and Alexey Belyanin, at Texas A&M University (College Station), and researchers Milan Fischer, Andreas Wittmann, and Jrme Faist, at ETH (Zurich, Switzerland). Funding was provided by the Air Force Office of Scientific Research, the National Science Foundation and two Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.




下一篇: PLC、DCS、FCS三大控

上一篇: 恩智浦半導體混合PCTV

推薦產品

更多
美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区


        国产在线精品一区二区不卡了| 精品奇米国产一区二区三区| 91美女在线观看| 国产成人免费视频网站 | 天天av天天翘天天综合网| 亚洲欧洲精品天堂一级| 亚洲欧美在线另类| 一区二区三区四区av| 无码av免费一区二区三区试看| 丝袜诱惑亚洲看片| 国内精品久久久久影院一蜜桃| 国产一区美女在线| 9i在线看片成人免费| 国产高清在线一区二区| 欧美性xxxx69| 一本大道久久a久久精品综合| 欧美视频一区二区三区在线观看| 欧美另类高清zo欧美| 精品久久久久一区| 最近日韩中文字幕| 奇米精品一区二区三区四区 | 亚洲成人三级小说| 久久国产尿小便嘘嘘尿| 成人av先锋影音| 欧美日韩在线观看一区| 一本色道久久综合精品竹菊| 91精品国产色综合久久ai换脸 | 精品国产一区二区三区免费| 亚洲精品在线免费看| 欧美精品成人一区二区三区四区| 久久久久久免费网| 午夜电影一区二区| 成人黄色av电影| 欧美1o一11sex性hdhd| 欧美三级一区二区| 精品剧情v国产在线观看在线| 亚洲日本va午夜在线电影| 久久99久国产精品黄毛片色诱| 91丨porny丨国产| 亚洲一区三区| 精品国产a毛片| 亚洲成人1区2区| 99re8在线精品视频免费播放| 精品国产乱码久久久久久久软件| 一本色道久久综合亚洲二区三区| 精品国产不卡一区二区三区| 午夜精品一区二区三区三上悠亚| av不卡免费电影| 欧美在线制服丝袜| 中文字幕中文字幕一区二区| 美女视频黄频大全不卡视频在线播放| 99re在线视频上| 中文字幕人成一区| 久久众筹精品私拍模特| 伊人色综合久久天天人手人婷| 国产成人福利片| 欧美日韩国产不卡在线看| 欧美一二三四区在线| 亚洲欧美精品午睡沙发| 国产一区二区h| 欧洲国产精品| 国产偷国产偷亚洲高清人白洁| 美女任你摸久久| 成人在线免费网站| 欧美日韩另类一区| 午夜天堂影视香蕉久久| 91丨九色丨国产丨porny| 日本精品视频一区二区三区| 国产精品九色蝌蚪自拍| 99久久伊人精品| 欧美日韩在线直播| 爽好多水快深点欧美视频| 国产精品久久国产精品| 制服.丝袜.亚洲.中文.综合| 水野朝阳av一区二区三区| 久久亚洲午夜电影| 精品国产亚洲一区二区三区在线观看 | 欧美日韩一区精品| 亚洲国产一区在线观看| 国产精品一码二码三码在线| 日韩亚洲欧美一区| 激情成人综合网| 一区二区在线高清视频| 亚洲自拍欧美精品| 久久国产一区二区| 国产精品人成在线观看免费| 成人福利视频网站| 欧美一级生活片| 久久狠狠亚洲综合| 一本色道久久加勒比精品| 亚洲韩国精品一区| 六十路精品视频| 亚洲码国产岛国毛片在线| 91麻豆精品在线观看| 欧美成人激情免费网| 国产91精品欧美| 欧美videossexotv100| 国产福利一区二区三区视频在线| 欧美日韩精品免费观看视频 | 亚洲成人av一区二区三区| 性欧美.com| 天堂av在线一区| 91国产成人在线| 日韩电影在线看| 欧美在线你懂得| 激情综合网天天干| 日韩一级高清毛片| www.欧美.com| 国产无遮挡一区二区三区毛片日本| 成人久久视频在线观看| 精品乱人伦小说| av午夜一区麻豆| 国产精品久久久久永久免费观看| 精品1区2区| 亚洲乱码中文字幕| 日韩欧美手机在线| 日韩高清欧美激情| 一区二区不卡在线| 久草在线在线精品观看| 欧美一区永久视频免费观看| 成人国产在线观看| 欧美韩国日本不卡| 欧美一进一出视频| 日韩经典中文字幕一区| 欧美伦理影视网| 91一区一区三区| 日韩美女视频19| 一区二区三区国| 国产乱妇无码大片在线观看| 精品国产乱码久久久久久牛牛| caoporn国产精品| 国产精品高清亚洲| 色综合色综合色综合色综合色综合 | 91精品国产全国免费观看| 91丨porny丨最新| 亚洲一区二区三区在线| 欧美日韩成人激情| 国产精品二区三区四区| 午夜精品免费在线观看| 日韩精品一区二区三区视频在线观看| 成人资源视频网站免费| 一区二区成人在线视频| 91麻豆精品国产综合久久久久久| 不卡一区二区三区视频| 午夜精品久久久久久| 91精品国产免费| 久久久精彩视频| 久久国产精品露脸对白| 国产欧美一区二区三区网站| 视频一区视频二区视频三区高| 国产一区二区精品在线观看| 国产精品女上位| 欧美吻胸吃奶大尺度电影| 风间由美久久久| 麻豆高清免费国产一区| 久久精品免费在线观看| 在线视频欧美区| 国产在线精品一区| 国产激情一区二区三区| 一区二区在线观看视频| 日韩欧美综合在线| 一区二区三区四区国产| 99在线视频精品| 污片在线观看一区二区| 国产欧美一区二区精品性色超碰| 色综合色狠狠综合色| 999国内精品视频在线| 美女www一区二区| 日韩美女啊v在线免费观看| 欧美一区二区美女| 色综合天天性综合| 国产日韩欧美精品| 国产成人午夜精品影院观看视频| 最新欧美精品一区二区三区| 欧美伦理电影网| 色噜噜一区二区| 国产精品久久亚洲| 成人免费av在线| 久久精品国产99国产精品| 一区二区三区在线观看国产| 亚洲精品在线三区| 欧美日韩日日摸| 亚洲高清精品中出| 久久99精品久久久久久三级 | 成人影片在线播放| 国产一区二区三区电影在线观看 | 国产91丝袜在线观看| 蜜臀av性久久久久av蜜臀妖精| 亚洲色图都市小说| 久久精品人人做人人爽97| 在线播放中文字幕一区| 色悠悠久久综合| 香蕉久久夜色| 欧美黄色直播| 精品久久久久久一区二区里番| 91丨九色丨国产丨porny| 国产精品一卡二卡在线观看| 奇米四色…亚洲| 日韩黄色一级片| 午夜精品国产更新|