美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区

產品分類

當前位置: 首頁 > 工業電氣產品 > 端子與連接器 > 線路板連接器 > FFC連接器

類型分類:
科普知識
數據分類:
FFC連接器

Metal-mesh技術是什么?Metal-mesh能夠替代ITO導電膜?

發布日期:2022-05-18 點擊率:66

    最近有幾篇新聞提到metal-mesh技術,似乎metal-mesh技術能夠在一定程度上代替ITO導電膜,這里我們找到一些相關信息,發布上來大家看看,希望對大家了解metal-mesh技術有所幫助。

    觸控metal-mesh技術將成為明年主流。2013年,蘋果公司iPad觸屏有望更快放量,美國Atmel公司film技術有望成為2013年pad領域的主流技術。

  如果能用metal-mesh(金屬網絡)替代傳統ITO導電層,可以使得電阻更低、導電層更薄

  從主流廠商在研機型數量來看,預計Film有望成為2013年中低端智能手機的主流技術;預計不僅iPadmini,而且下一代10.1英寸iPad、KindleFire和GoogleNexus都會采用Film方案,如果符合預期,那么Film也有望成為2013年Pad領域的主流技術。

  metal-mesh技術有望進一步強化Film觸屏的性價比優勢。

相關新聞鏈接

New Materials Will Replace ITO To Improve Touchscreens

From smart phones to tablets to GPS systems, touchscreen devices are everywhere. Consumers now expect an intuitive touch experience from every new device that hits the market. Since the introduction of Apple’s iPhone in 2007, the touchscreen sensor and IC market has exploded. In fact, according to NPD DisplaySearch, this market crossed $10 billion in 2011 and is expected to double again by 2014. 

Touchscreens are set to become even more pervasive with the introduction of Windows 8, which integrates touch functionality into the world’s most widely used operating system. As such, the computer industry is gearing up to integrate  touchscreens into thin touch-enabled laptops dubbed “ultrabooks” by Intel, in addition to all-in-one computers. Microsoft and Intel have also gone well beyond just developing their core products and are using hundreds of millions of dollars in marketing funds to ensure there is ample capacity for touchscreens for the new devices that use their products.

Already OEMs are creating very large touchscreen prototypes similar to those in the 2002 movie Minority Report, while others are completely transforming touchscreen functionality by making devices flexible and foldable. Unfortunately, the traditional transparent conductive materials are hindering production and keeping these innovations from reaching an eager group of consumers.

ITO: An Outdated Approach

The emerging markets for projected capacitive large area and flexible touchscreens require transparent conductor materials that combine low material and processing costs with flexibility, high conductivity, and excellent optical performance.

The vast majority of today’s touchscreen devices, such as smart phones and tablets, run on one such transparent conductive material: indium tin oxide (ITO) deposited on either plastic films or glass.

ITO is a ceramic material processed using vacuum deposition at high temperatures, making production very expensive. Developers have understandably turned to ITO on glass for larger area touchscreens since it offers low resistance. However, this option is far from ideal in several respects. In addition to being expensive, glass substrates are fragile and are thick and heavy.

For flexible or curved screens that require thin plastic substrates, electrical and optical performance diminishes significantly as the substrate materials limit the ITO deposition temperature. Also, ITO cannot withstand repeated bending or rolling as it is brittle and prone to cracking, limiting truly flexible devices.

In addition to concerns about its limited capabilities, there is an ongoing global push to replace ITO because of sustainability and price concerns. ITO is mostly indium, a rare, volatile, and geopolitically sensitive material. Most of the world’s indium is a byproduct of zinc mined in China, which has shown a willingness to use its mineral wealth as a competitive advantage for its own industries. According to Indium Corp., commissioning a new mine to produce zinc and indium takes seven years, and a sudden increase in demand is always followed by a period of shortage coupled with high prices. To meet the huge sudden increase in demand for touchscreens, an alternate transparent conducting material is not only desirable, but a necessity.

Forging Ahead With Alternative Materials

Some may view the transition away from ITO as a challenge, but several new conductive materials are poised to take over and enable exciting new devices.

One such material is graphene, a two-dimensional sheet of carbon that is a single atom thick with excellent strength, flexibility, transparency, and electrical conductivity. This new wonder material is a hot field for research. However, it is expected to take several years before there is a mature production process and compatible supply chain place.

Roll-to-roll metal mesh technology offers another alternative to ITO as low resistance can be achieved even on plastics substrates. Suggested applications of this technology include “edgeless” touchscreen devices without bezels or designs in which the touch interface wraps around the sides of the device. The widespread adoption of this technology is dependent on making metal lines finer to make them invisible and eliminate moiré patterns when coupled with displays.

Silver nanowires are another exciting and promising prospect. A percolated network of single crystal silver nanowires results in highly conductive layers with excellent transparency and unmatched flexibility. Transparent conductive films based on silver nanowires promise to enable widespread use of touch by achieving much lower cost than ITO sensors.

First, silver is 50 to 100 times more conductive than ITO, resulting in much lower material costs. Second, unlike ITO, silver nanowires are deposited from water-based inks in a high-throughput roll-to-roll process, enabling low-cost film production. In addition, the low processing temperatures enable very high conductivity even on flexible plastic substrates.

Unlike graphene, silver nanowires are commercially available on thin, flexible plastic substrates from multiple suppliers. These silver nanowire films fit into current production lines designed for ITO sensor manufacturing and. In fact, they’re already being used in several touchscreen devices on the market.

For example, thin, light, and shatter-proof large area touchscreens for ultrabooks, all-in-one computers, and monitors enabled by low-resistance silver nanowire films are scheduled to be on the market later this year. This material presents immense opportunities for developers exploring new designs, including flexible displays and curved surfaces.

With the emergence of new, superior transparent conductive materials, the projected capacitive touch device market is on the verge of a metamorphosis. ITO will be replaced by lighter, bendable films that deliver enhanced optical quality at lower production cost.

Smart phones, tablets, ultrabooks, and other existing devices will be thinner, lighter, and more responsive. Moreover, better, cheaper transparent conductive materials will drive technological experimentation and progress, opening the door for cutting-edge designs and enabling a bright future for touchscreens.


下一篇: PLC、DCS、FCS三大控

上一篇: 玻璃經過化學強化表面

推薦產品

更多
美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区


        91视频一区二区| 一区二区不卡在线视频 午夜欧美不卡在| 日韩高清国产精品| 成人在线观看av| www.成人av| 不卡一卡2卡3卡4卡精品在| 97视频热人人精品| 激情视频一区二区| 日韩电影天堂视频一区二区| 亚洲aⅴ天堂av在线电影软件| 婷婷五月色综合| 色综合天天天天做夜夜夜夜做| 中文字幕在线亚洲精品| 欧美性做爰猛烈叫床潮| 4438亚洲最大| 国产日韩综合av| 亚洲乱码国产乱码精品精的特点 | 精品少妇一区二区三区在线播放 | 久久久久国产精品厨房| 国产欧美一区二区三区鸳鸯浴| 国产精品久99| 手机精品视频在线观看| 国产一区视频在线看| www.欧美亚洲| 免费中文日韩| 欧美日韩不卡视频| 国产免费成人在线视频| 亚洲一区在线视频| 国产剧情一区二区| 国产精品久久国产精品| 日本精品一区二区三区四区的功能| 91精品久久久久久久久99蜜臂| 久久久另类综合| 亚洲综合一区在线| 国产福利视频一区二区三区| 国产日韩亚洲精品| 欧美无乱码久久久免费午夜一区 | 亚洲欧美综合色| 理论片日本一区| 国产二区不卡| 色悠悠久久综合| 国产拍欧美日韩视频二区| 亚洲国产成人va在线观看天堂 | 欧美亚洲免费高清在线观看| 欧美日韩精品高清| 国产精品成人免费| 久久99国产乱子伦精品免费| 国产高清一区视频| 欧美色成人综合| 成人免费在线视频观看| 国产精品资源在线观看| 日本在线视频不卡| 久久夜色精品国产噜噜av| 午夜久久久久久| 91久久大香伊蕉在人线| 欧美在线综合视频| 亚洲情趣在线观看| 99精品视频一区二区| 欧美在线免费观看亚洲| 国产精品国产三级国产| 国产福利不卡视频| 日本韩国欧美在线| 亚洲精品欧美专区| 999在线免费观看视频| 欧美日韩国产bt| 亚洲大片精品永久免费| 国产成人成网站在线播放青青| 欧美日韩精品欧美日韩精品| 亚洲最大色网站| 国产精品三区www17con| 精品国产乱码久久久久久浪潮| 日本不卡一区二区| 欧美亚洲另类在线一区二区三区| wwww国产精品欧美| 国产麻豆精品一区二区| 中文字幕一区二区三区在线乱码 | 欧美一区二区女人| 日一区二区三区| 日本不卡在线播放| 国产精品成人在线观看| 2014国产精品| 亚洲精品一区二区在线观看| 黑人精品欧美一区二区蜜桃 | 国产精品一区二区三区免费观看| 欧美一区二区三区爱爱| 九色porny丨国产精品| 亚洲欧洲免费无码| 一区二区三区视频在线看| 国产一区在线观| 国产精品色哟哟网站| 99www免费人成精品| 久久亚洲二区三区| 99久久精品国产导航| 91精品国产入口| 国产精品自在在线| 欧美一二三四在线| 国产成人免费av在线| 91精品国产一区二区| 国产一区二区三区四区在线观看| 欧美日韩一区二区欧美激情| 日本亚洲欧美天堂免费| 中文字幕免费在线不卡| 石原莉奈在线亚洲二区| 色综合一个色综合亚洲| 日韩av不卡在线观看| 日本黄色一区二区| 美女免费视频一区二区| 欧美体内she精高潮| 狠狠久久亚洲欧美| 日韩欧美一级二级三级久久久| 国产成人精品一区二区三区网站观看| 3d动漫精品啪啪| 99在线精品观看| 欧美国产亚洲另类动漫| 精品免费二区三区三区高中清不卡 | 一本一生久久a久久精品综合蜜| 亚洲综合男人的天堂| 亚洲一区二区精品在线| 青青草成人在线观看| 欧美日韩一区二区三区视频| 韩国毛片一区二区三区| 欧美成va人片在线观看| 91九色蝌蚪成人| 亚洲精品国久久99热| 在线观看成人一级片| 韩国三级电影一区二区| 精品久久久三级丝袜| 国产日韩三区| 五月综合激情婷婷六月色窝| 欧美另类videos死尸| 91丨九色丨国产丨porny| 综合分类小说区另类春色亚洲小说欧美 | 不卡一区二区在线| 国产精品美女久久久久久2018| 老牛影视免费一区二区| 日韩制服丝袜先锋影音| 91精品国产色综合久久不卡电影 | 99视频网站| 亚洲一区二区美女| 欧美肥妇free| 国产伦精品一区二区三区四区视频 | 2023国产一二三区日本精品2022| 成人欧美一区二区三区视频xxx| 一区二区三区免费网站| 欧美午夜一区二区三区免费大片| 不卡影院免费观看| 亚洲综合自拍偷拍| 日韩欧美激情一区| 欧美美乳视频网站在线观看| 奇米在线7777在线精品 | 亚洲精品精品亚洲| 欧美日韩国产经典色站一区二区三区 | 久久涩涩网站| 久草这里只有精品视频| 国产拍揄自揄精品视频麻豆| 在线观看免费91| 成人性生交大片免费看中文网站| 国产精品国产三级国产有无不卡| 在线观看网站黄不卡| 91免费看网站| 免费成人美女在线观看| 国产精品免费人成网站| 精品婷婷伊人一区三区三| 成人动漫视频在线观看完整版| 奇米在线7777在线精品| 久久久久久99精品| 在线欧美日韩国产| 蜜桃欧美视频| 成年人网站91| 精品一区二区免费视频| 亚洲色大成网站www久久九九| 91精品婷婷国产综合久久竹菊| 青青草国产精品| 不卡的av电影在线观看| 日本欧美韩国一区三区| 国产精品久久久久aaaa| 欧美一级久久久久久久大片| 日韩精品久久久| 久久综合视频网| 51精品国产人成在线观看| 亚洲不卡一区二区三区| 久久国产精品一区二区| 天堂成人国产精品一区| 日韩精品专区在线| 色哦色哦哦色天天综合| 韩日午夜在线资源一区二区| 国产成人精品1024| 天天色天天操综合| 国产精品久久久久一区二区三区共| 欧美性受xxxx黑人xyx| 免费毛片一区二区三区久久久| 成人黄色软件下载| 久草热8精品视频在线观看| 亚洲午夜在线电影| 亚洲视频狠狠干| 国产精品你懂的| 中文字幕欧美激情| 久久亚洲欧美国产精品乐播 | av一本久道久久波多野结衣| 国产永久精品大片wwwapp|