美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区

產(chǎn)品分類(lèi)

當(dāng)前位置: 首頁(yè) > 工業(yè)電氣產(chǎn)品 > 端子與連接器 > 線路板連接器 > FFC連接器

類(lèi)型分類(lèi):
科普知識(shí)
數(shù)據(jù)分類(lèi):
FFC連接器

Case Temperature versus Ambient Temperature

發(fā)布日期:2022-04-17 點(diǎn)擊率:64

       
When you wish to control the temperature of a device, ambiguity regarding what constitutes the ambient temperature of a system can lead to inaccuracy of the derating curve. Measuring case temperature rather than ambient can simplify and increase the accuracy of the thermal testing procedure.

Ambient temperature is a term which refers to the temperature in a room, or the temperature which surrounds an object under discussion. For electronic components, ambient temperature along with power dissipation in nearby components and the components' own power dissipation represent the main source of temperature extremes. Temperature extremes can damage components and should be avoided where possible. Unfortunately, it is often the case that limiting the ambient temperature is not possible due to the specific application in which the device is being used. The only available option to the end system designer becomes limiting the power dissipation of the components of the device itself. This is achieved by limiting the current flowing through these components (effectively lowering the supplies power limit) in applications that have high ambient temperatures. This lowering of the power limit is known as “derating”, and is usually specified in datasheets using a “derating curve” (see Figure 1).

Derating Curve

Figure 1: Derating curve.


Figure 1 shows the derating curves for the Xgen power supply. Taking the XCC/XCV model operating at 230 Vac as an example, the power supply is rated to output 1000 watts from 0°C to 45°C ambient. Then from 45°C to 70°C, the power supply is then linearly derated to 600 watts. The power supply is not rated for operation at ambient temperatures higher than 70°C. If the power supply is operated within these limits, any harmful thermal conditions are avoided. However, the accuracy of the derating curve is limited by the accuracy of the ambient temperature measurement, and this raises a number of issues, which will be discussed in the next section.

Ambient temperature measurement

As seen in the previous section, the ambient temperature is used as the base temperature for derating curve specifications. Unfortunately, the term ambient temperature has become quite ambiguous. Following are a number of interpretations of the term “ambient temperature”, illustrated in Figure 2.

Ambient test points

Figure 2: Ambient test points.

  1. The temperature of the immediate environment, unaffected by the temperature rise of the power supply itself. This is measured at either a distance from the power supply itself, or before the supply is turned on.

  2. The temperature of the air inside the power supply itself (measured far enough away from any components so to not be affected by the temperature of the components themselves).

  3. The temperature of the air flowing directly over the components.

  4. The temperature of the board or chassis of the system (which is considered to never rise above a certain maximum temperature).

  5. The temperature entering or exiting the power supply.

  6. The temperature of the immediate environment during a bench test.

  7. The temperature setting of the oven during elevated temperature tests.

  8. The temperature that a system is preheated to prior to an operational test.

A system designer will generally use interpretations 2, 4, or 5, as this would be the temperature they have experienced from previous systems and will ultimately be able to measure on the system in the field. A system test engineer will probably use interpretations 6, 7, or 8, since the temperature will need to be controlled in their testing scenarios. A component supplier will probably use interpretations 1 or 3, which would be used in component modeling. This confusion of what exactly constitutes the ambient temperature of a system means that the calculation of a component’s predicted temperature can be quite inaccurate. To avoid this disparity, it is necessary to carefully define where and how the ambient temperature measurement is taken.

Inaccuracy of the derating curve due to ambiguity in the ambient measurement is also compounded by the fact that there can be other elements in the system which can affect the temperature of the components, while ambient conditions remain constant. These include such elements as device orientation, how the device is mounted during operation (e.g. whether attached to metal, wood, surface area exposed to air etc.), and restriction of airflow.

Case temperature measurement

An alternative to measuring the ambient temperature and using a derating curve is to get closer to the components themselves, in effect narrowing the scope of the system being tested. This can be achieved by measuring case temperature.

Measuring case temperature rather than ambient temperature means that many external influences (such as orientation, mounting, etc.) can be ignored as they are now outside the scope of the thermal test. We can now define a maximum case temperature that will ensure that the internal components do not experience dangerous temperature levels.

Also, measuring case temperature allows for a specific location on the case to be designated as a test point, which means that unlike ambient measurement, there is little confusion when it comes to thermal testing in the field.

Essentially, by measuring case temperature rather than ambient, we are simplifying and increasing the accuracy of the thermal testing procedure. Rather than measuring ambient conditions and attempting to work backwards to calculate how close to a maximum safe temperature the internal components may get, we define a maximum safe temperature for the test device itself, and treat it as we would any component, and ensure that it operates within this well-defined operating parameter.

References

  1. “Why Ambient Temperature Matters” Matt Romig,
    http://www.eetimes.com/design/power-management-design/4206513/What-is-ambient-temperature--anyway--and-why-does-it-matter-.

  2. “Xgen Designers Manual”, Excelsys Technologies,
    http://www.excelsys.com/technical-support/designer-manual.

下一篇: PLC、DCS、FCS三大控

上一篇: Energy Measurement I

推薦產(chǎn)品

更多
美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区


        激情六月婷婷综合| 美女任你摸久久| 日本一区二区免费在线观看视频| 欧美日韩综合另类| 国产精品一区专区| 欧美性猛片xxxx免费看久爱| 久草精品电影| 欧美日韩大片一区二区三区| 日韩一区国产在线观看| 精品一区二区成人精品| 美女免费视频一区二区| 蓝色福利精品导航| 国产一区二区不卡在线 | 亚洲免费av在线| 亚洲va国产天堂va久久en| 青青草国产成人99久久| 极品少妇一区二区三区精品视频 | 奇米一区二区三区| 欧美一级片在线看| 久久嫩草精品久久久精品一| 欧美经典三级视频一区二区三区| 国产精品嫩草影院av蜜臀| 最新热久久免费视频| 亚洲国产欧美一区二区三区丁香婷| 视频在线观看一区| 国产乱码精品一区二区三区忘忧草 | 麻豆91蜜桃| 欧美午夜精品理论片a级大开眼界 欧美午夜精品久久久久免费视 | 蜜臀va亚洲va欧美va天堂| 国产成人超碰人人澡人人澡| y111111国产精品久久婷婷| 欧美日本亚洲| 91精品麻豆日日躁夜夜躁| 国产精品丝袜一区| 免费国产亚洲视频| 91免费看`日韩一区二区| 欧洲视频一区二区三区| 在线播放日韩导航| 亚洲欧美在线观看| 美国十次了思思久久精品导航| 国模大尺度一区二区三区| 国产精品99久久久久久似苏梦涵| 99精品国产99久久久久久白柏| 一级做a爱片久久| 老鸭窝一区二区久久精品| av网站一区二区三区| 日本免费高清不卡| 91精品国产品国语在线不卡| 日韩毛片视频在线看| 国产综合久久久久久久久久久久| 国产精品久久久久久免费观看| 91国模大尺度私拍在线视频| 久久美女艺术照精彩视频福利播放| 亚洲一级电影视频| 97久久精品人人做人人爽| 伊甸园精品99久久久久久| 国产欧美日韩三级| 精品在线一区二区| 久久久久久久久久久久久久久久av| 欧美日韩一区二区三区在线看| 日韩毛片视频在线看| av午夜一区麻豆| 色一情一伦一子一伦一区| 中文字幕精品一区二区精品绿巨人 | 日本乱码高清不卡字幕| 中文字幕乱码亚洲精品一区| 国产一区二区美女| 亚洲精品高清国产一线久久| 久久精品亚洲麻豆av一区二区| 久久超碰97中文字幕| 欧美日韩国产免费一区二区三区| 欧美成人一级视频| 老司机精品视频线观看86| 亚洲精品成人自拍| 亚洲欧美怡红院| 91精品婷婷国产综合久久蝌蚪| 欧美一级视频精品观看| 久久精品国产精品亚洲红杏| 日韩一二三区不卡在线视频| 亚洲欧美一区二区久久| 99re国产在线播放| 26uuu成人网一区二区三区| 极品少妇xxxx偷拍精品少妇| 中文字幕欧美人与畜| 一区二区三区四区视频精品免费| www.久久久| 久久午夜电影网| 成人精品国产福利| 日韩欧美国产成人一区二区| 老司机精品视频在线| 中文字幕乱码一区二区三区| 性久久久久久久| 欧美日韩国产精品一卡| 亚洲免费观看高清完整版在线| 国产在线精品二区| 国产精品超碰97尤物18| 精品国产一区二区三区久久久久久| 久久精品视频在线免费观看| a级高清视频欧美日韩| wwwwww.欧美系列| 成人午夜激情影院| 亚洲国产综合色| 无遮挡亚洲一区| 中文字幕不卡每日更新1区2区| 欧美精品日韩综合在线| 日韩电影在线免费| 色偷偷成人一区二区三区91 | 在线精品视频小说1| 日本人妖一区二区| 欧美日韩中文国产| 国产一区二区在线观看视频| 538prom精品视频线放| 丁香婷婷综合激情五月色| 欧美电影免费观看高清完整版在线观看 | 成人精品视频一区二区三区尤物| 精品人在线二区三区| 91啪在线观看| **网站欧美大片在线观看| 欧美日韩国产精品一卡| 天天色 色综合| 欧美精品粉嫩高潮一区二区| 成人av在线一区二区| 国产精品日韩成人| 日韩欧美激情一区二区| 日韩高清在线电影| 91精品国产欧美一区二区| 91论坛在线播放| 一区二区三区四区不卡在线| 色综合天天综合网国产成人综合天 | 自拍偷拍99| 国产精品亚洲午夜一区二区三区 | 亚洲一线二线三线视频| 在线精品亚洲一区二区| 国产专区欧美精品| 国产夜色精品一区二区av| 美女三级99| 麻豆精品国产传媒mv男同| 日韩精品中文字幕一区| 国严精品久久久久久亚洲影视| 亚洲动漫第一页| 欧美一区二区三区电影| 国产一区二区在线观看免费播放| 午夜电影久久久| 精品国产亚洲在线| 亚洲国产精品123| 国产激情一区二区三区| 日韩美女啊v在线免费观看| 在线亚洲欧美专区二区| 91麻豆国产福利在线观看| 亚洲高清不卡在线| 精品奇米国产一区二区三区| 欧美一级日本a级v片| 国产成人午夜99999| 亚洲精品国产品国语在线app| 欧美人成免费网站| 久久免费一区| 国产盗摄一区二区| 亚洲综合一二区| 欧美α欧美αv大片| 五月天婷亚洲天综合网鲁鲁鲁| 国产精品一二三四区| 亚洲综合一区在线| 久久一二三国产| 欧美在线免费播放| 国产高清不卡av| 黄色资源网久久资源365| 最新不卡av在线| 91精品国产美女浴室洗澡无遮挡| 日韩欧美精品在线不卡| 91热门视频在线观看| 久久99久久精品| 一区二区在线免费| 久久综合给合久久狠狠狠97色69| 一区二区不卡在线| 国产一区二区免费电影| 成人福利视频网站| 看国产成人h片视频| 亚洲综合激情网| 国产欧美日韩综合精品一区二区 | 一区av在线播放| 久久在线免费观看| 欧美美女一区二区在线观看| 久久资源亚洲| 91在线精品一区二区| 激情国产一区二区 | 亚洲电影一级片| 国产精品午夜免费| 精品国产亚洲在线| 91精品国产一区二区三区香蕉| 亚洲一区在线直播| 久久久一本精品99久久精品66| 99免费精品在线观看| 国产露脸91国语对白| 日本欧美肥老太交大片| 夜色激情一区二区| 亚洲自拍欧美精品| 亚洲情趣在线观看| 中文字幕一区二区三区四区不卡 | 欧美日韩黄色一区二区| 色综合久久久久久久久久久|